Downregulation of SnoN expression in obstructive nephropathy is mediated by an enhanced ubiquitin-dependent degradation.
نویسندگان
چکیده
Smad transcriptional co-repressor SnoN acts as an antagonist that tightly controls the trans-activation of TGF-beta/Smad target genes. SnoN protein is reduced progressively in the fibrotic kidney after obstructive injury, suggesting that the loss of Smad antagonist is a critical event that leads to an uncontrolled fibrogenic signaling. However, the mechanism underlying SnoN downregulation remains unknown. This study investigated the regulation and mechanism of renal SnoN expression in vivo. Whereas SnoN protein was markedly diminished, its mRNA levels remained relatively constant in the obstructed kidney after ureteral ligation. An increased ubiquitination and proteasome-dependent degradation of SnoN was found in obstructed kidney, compared with sham controls. Smad ubiquitination regulatory factor-2, an E3 ubiquitin ligase, was induced and formed a complex with SnoN in vivo. In vitro, TGF-beta1 promoted SnoN protein degradation, which was mediated by ubiquitination and a proteasome-dependent mechanism. SnoN constitutively interacted with another Smad co-repressor, Ski, and they formed ternary complex with Smad2/3 upon TGF-beta1 stimulation. However, ectopic expression of Ski did not alter the degradation rate of SnoN. Blockage of SnoN degradation by proteasome inhibitor abolished TGF-beta1-mediated alpha-smooth muscle actin and fibronectin induction, suggesting that SnoN degradation could be necessary for TGF-beta1 to exert its fibrogenic action. Furthermore, knockdown of Smad ubiquitination regulatory factor-2 expression by small interfering RNA strategy led to an increase in SnoN abundance and inhibited the TGF-beta1-mediated gene transcription. These results indicate that downregulation of SnoN expression in the obstructed kidney is mediated by an enhanced ubiquitin-dependent degradation. Preservation of SnoN by inhibiting its degradation may be a novel strategy for targeting hyperactive Smad signaling in renal fibrotic diseases.
منابع مشابه
The Proteasome Inhibitor, MG132, Attenuates Diabetic Nephropathy by Inhibiting SnoN Degradation In Vivo and In Vitro
Transforming growth factor-β (TGF-β) has been shown to be involved in diabetic nephropathy (DN). The SnoN protein can regulate TGF-β signaling through interaction with Smad proteins. Recent studies have shown that SnoN is mainly degraded by the ubiquitin-proteasome pathway. However, the role of SnoN in the regulation of TGF- β/Smad signaling in DN is still unclear. In this study, diabetic rats ...
متن کاملThe downregulation of SnoN expression in human renal proximal tubule epithelial cells under high-glucose conditions is mediated by an increase in Smurf2 expression through TGF-β1 signaling.
Transforming growth factor (TGF)-β1 is a profibrotic cytokine that plays a critical role in the progression of diabetic nephropathy (DN). Previous studies have demonstrated that the Smad transcriptional co-repressor, Ski-related novel protein N (SnoN), an antagonizer of TGF-β1/Smad signaling, is downregulated in the kidneys of diabetic rats; however, the underlying molecular mechanisms remain e...
متن کاملSnoN as a key regulator of the high glucose-induced epithelial-mesenchymal transition in cells of the proximal tubule.
BACKGROUND/AIMS Ski-related protein N (SnoN) suppression is essential to transforming growth factor-β1 induction and the epithelial-mesenchymal transition (EMT) in several cancer cells. The role of SnoN in diabetic nephropathy is unknown. We aimed to determine the role of SnoN in the EMT of proximal tubule cells (PTCs) maintained under high glucose conditions. METHODS Immunohistochemistry, im...
متن کاملMolecular basis for the cell type specific induction of SnoN expression by hepatocyte growth factor.
Hepatocyte growth factor (HGF) is a potent antifibrotic cytokine that antagonizes the TGF-beta1/Smad signaling in diverse types of kidney cells by different mechanisms. HGF is shown to induce Smad co-repressor Sloan-Kettering Institute proto-oncogene-related novel gene, non-Alu-containing (SnoN) expression in proximal tubular epithelial cells (HKC-8) but not in glomerular mesangial cells and in...
متن کاملBMP-7 enhances SnoN mRNA expression in renal tubular epithelial cells under high-glucose conditions
The present study aimed to identify any association between bone morphogenetic protein‑7 (BMP‑7) and the expression of the transcriptional co‑repressor Ski‑related novel protein N (SnoN), in addition to alterations in tubulointerstitial fibrosis, during the development and progression of diabetic nephropathy (DN). Streptozotocin was injected into the tail veins of 20 healthy and specific pathog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 17 10 شماره
صفحات -
تاریخ انتشار 2006